R&D of Muon Storage Ring PRISM-FFAG to Improve a Sensitivity of mu-e conv. Experiment Beyond BR~10⁻¹⁷

Akira SATO Osaka University,

Nufact08, 10th International Workshop on Neutrino Factories, Superbeams and Betabeams (30 June - 05 July 2008), Valencia, Spain

Outline

- Importance of a muon storage ring
 - BG in MECO-type
 - BG in PRISM-type
- PRISM and PRISM-FFAG
- R&D status of the PRISM-FFAG
- Summary

Muon - Electron Conversion

1s state in a muonic atom

nuclear muon capture

$$\mu^- + (A, Z) \rightarrow \nu_\mu + (A, Z - 1)$$

Neutrino-less muon nuclear capture (=µ-e conversion)

$$\mu^- + (A, Z) \rightarrow e^- + (A, Z)$$

signal:

$$m_{\mu} - B_{\mu} \sim 105 MeV$$

$$B(\mu^{-}N \rightarrow e^{-}N) = \frac{\Gamma(\mu^{-}N \rightarrow e^{-}N)}{\Gamma(\mu^{-}N \rightarrow \nu N^{'})}$$

COMET (MECO-type): $B(\mu^{-} + Al \rightarrow e^{-} + Al) < 10^{-16}$

A proposal submitted to J-PARC in Dec. 2007. Under discussion in J-PARC PAC.

- * Stop μ at the stopping targets.
- * ID single electron from the target and measure its energy precisely.
- Suppress backgrounds strongly.
- * The sensitivity would be limited by BG level.

Background Sources

Intrinsic Physics Backgrounds

- Muon decay in orbit of a muonic atom,
- Radiative muon capture on a nucleus,

for MECO-type

measure E_e with a high accuracy σ_{Ee} ~350keV is dominated by dE distribution in the stopping target.

Beam-related Prompt Backgrounds

- Radiative pion capture on a nucleus,
- Pion decay in flight,
- · Muon decay in flight,
- Antiproton interaction,
- Scattering of electrons in a beam,

need extinction ratio ~ 10-9
time window
collimators
foils on the beamline
kinematical cut

Non-Beam-related Backgrounds

· Cosmic-rays.

Beam Extinction Ratio

- In MECO-type experiments, signals of mu-e conv. events will be searched after waiting for while from the primary proton pulse hitting the production target to suppress prompt backgrounds,
- By doing this, the prompt background events produced by primary proton pulse will be suppressed down to a negligible level. The only remaining backgrounds are the prompt background events produced by off-timing protons coming between main pulses.

High extinction ratio is dispensable for MECO-type experiments.

Pion Radiative Capture

• Expected number of background events coming from the radiative pion capture :

$$N_{
m RPC} = N_p \cdot R_{
m extinction} \cdot R_{\pi/p} \cdot P_{\pi-
m survive} \cdot P_{
m RPC} \cdot P_{\gamma} \cdot R_{
m acceptance}$$
 for COMET N_p a number of protons 16 x 10 20 for BR10 $^{-16}$ $R_{
m extinction}$ the extinction ratio 10 $^{-9}$ for $N_{
m RPC}$ = 0.1 $R_{\pi/p}$ a number of pions transport through the curved muon beam line per one proton hitting the production target 1 x 10 $^{-5}$ $P_{\pi-
m survive}$ a survival probability in the decay solenoid that follows the curved muon beam line 0.1 for L=7m $P_{
m RPC}$ a probability of a gamma emission from a pion capture 0.02 P_{γ} a probability of photon conversion in an Al target with a conversion electron in a signal region from 104.0MeV to 105.2MeV 3.5 x 10 $^{-5}$ $P_{
m acceptance}$ an signal acceptance without a timing-window factor 0.1

Expected Background in MECO Experiment

expect ~ 0.45 background events for 10% s running with sensitivity of \sim 5 signal events for R $_{\odot}$ = 10- 16

Source	Events	Comments	
μ decay in orbit	0.25	$S/N = 20 \text{ for } R_{\mu e} = 10^{-16}$	
Tracking errors	< 0.006		
Radiative µ decay	< 0.005		
Beam e-	< 0.04		
μ decay in flight	< 0.03	Without scattering in stopping target	
μ decay in flight	0.04	With scattering in stopping target	
π decay in flight	< 0.001		
Radiative π capture	0.07	From out of time protons	
Radiative π capture	0.001	From late arriving pions	
Anti-proton induced	0.007	Mostly from π-	
Cosmic ray induced	0.004	Assuming 10 ⁻⁴ CR veto inefficiency	
Total Background	0.45	Assuming 10 ⁻⁹ inter-bunch extinction	

Expected Backgrounds in COMET

Table 6.6: Summary of the background rates at a sensitivity of 10^{-16} . Backgrounds identified with an asterisk are proportional to the beam extinction, and the rates in the table assume 10^{-9} beam extinction.

Background	Events	Comments
Muon decay in orbit	0.05	230 keV (sigma) assumed
Pattern recognition errors	< 0.001	
Radiative muon capture	< 0.001	
Muon capture with neutron emission	< 0.001	
Muon capture with charged particle emission	< 0.001	
Radiative pion capture*	0.12	prompt pions
Radiative pion capture	0.002	due to late arriving pions
Muon decay in flight*	< 0.02	
Pion decay in flight*	< 0.001	
Beam electrons*	0.08	
Neutron induced*	0.024	for high energy neutrons
Antiproton induced	0.007	for 8 GeV protons
Cosmic rays induced	0.2	with 10^{-4} veto inefficiency
Total	0.50	

BR~
$$10^{-17} \rightarrow N_{BG}$$
~ 5

Toward Higher Sensitivity Beyond BR~10⁻¹⁷

- We can not go to the higher sensitivity than BR~10⁻¹⁷ with the current MECO-type setup, because the backgrounds limit the sensitivity.
- We need new ideas to improve the sensitivity. PRISM provides a solution using a muon storage ring.

Functions of Muon Storage Ring

- make momentum spread narrower,
- eliminate unwanted particle
 - long flight length
 - charge selection
 - momentum selection

... To Make Narrow Beam Energy Spread

- A technique of phase rotation is adopted.
- The phase rotation is to decelerate fast beam particles and accelerate slow beam particles.
- To identify energy of beam particles, a time of flight (TOF) from the proton bunch is used.
 - Fast particle comes earlier and slow particle comes late.

- Proton beam pulse should be narrow (< 10 nsec).
- Phase rotation is a wellestablished technique, but how to apply a tertiary beam like muons (broad emittance)?

Background Sources

• Intrinsic Physics Backgrounds

- Muon decay in orbit of a muonic atom,
- Radiative muon capture on a nucleus,

for PRISM-type

measure E_e with much higher accuracy σ_{Ee} ~250keV is dominated by

mono-energetic muon beam enables to use thiner targets.

intrinsic resolution of the tracker.

• Beam-related Prompt Backgrounds

- Radiative pion capture on a nucleus,
- · Pion decay in flight,
- · Muon decay in flight,
- Antiproton interaction,
- Scattering of electrons in a beam,

long flight length in the ring

Non-Beam-related Backgrounds

· Cosmic-rays.

Pion Radiative Capture for PRISM

• Expected number of background events coming from the radiative pion capture :

$$N_{\mathrm{RPC}} = N_p \cdot R_{\mathrm{extinction}} \cdot R_{\pi/p} \cdot P_{\pi-\mathrm{survive}} \cdot P_{\mathrm{RPC}} \cdot P_{\gamma} \cdot R_{\mathrm{acceptance}}$$
 for PRISM
$$N_p \qquad \text{a number of protons} \qquad 5 \times 10^{21} \text{ for BR10}^{-18}$$

$$R_{\mathrm{extinction}} \qquad \text{the extinction ratio} \qquad -$$

$$R_{\pi/p} \qquad \text{a number of pions transport through the curved muon beam line per one proton hitting the production target} \qquad -$$

$$P_{\pi-\mathrm{survive}} \qquad \text{a survival probability in the decay solenoid that follows the curved muon beam line} \qquad 1.8 \times 10^{-27} \text{ for L=39x6m}$$

$$P_{\mathrm{RPC}} \qquad \text{a probability of a gamma emission from a pion capture} \qquad -$$

$$P_{\gamma} \qquad \text{a probability of photon conversion in an Al target with a conversion electron in a signal region from 104.0MeV to 105.2MeV}$$

$$R_{\mathrm{acceptance}} \qquad \text{an signal acceptance without a timing-window factor} \qquad -$$

No pion contamination in the muon beam. Enable to open the detection window from t=0.

Japanese staging plan of mu-e conversion

2nd Stage: PRISM/PRIME

$$B(\mu^- + Al \to e^- + Al) < 10^{-16}$$

- •without a muon storage ring.
- •with a slowly-extracted pulsed proton beam.
- doable at the J-PARC NP Hall.
- •regarded as the first phase / MECO type
- Early realization

$$B(\mu^- + Ti \to e^- + Ti) < 10^{-18}$$

- •with a muon storage ring.
- •with a fast-extracted pulsed proton beam.
- •need a new beamline and experimental hall.
- •regarded as the second phase.
- Ultimate search

PRISM-FFAG

- Functions
 - makes monoenergetic muons : phase rotation
 - reduces π in the beam : long flight length
- Requirements & R&D items
 - Large acceptance FFAG-ring
 - Horizontal: 38000 π mm mrad
 - Vertical : 5700 π mm mrad
 - Momentum : 68MeV/c +- 20%
 - High field grad. RF system (170kV/m = 2MV/turn)
 - Quick phase rotation
 - ~1.5µs

Goal for this budget 2003-2007 (extended to 2008):

Build a full-size FFAG-ring and test and establish the phase rotation to make monoenergetic beams.

Status and Schedule: 2003-2008

- FFAG Design : completed
- Development of FFAG Magnets :
 - FFAG Magnet x 6 : completed
 - Field measurement for the three: completed
- Beam dynamics study w/ one magnet : completed (Ph.D of Y.Kuriyama)
- Development of RF :
 - 170kV/m sinusoidal @ 5MHz : completed
 - 100kV/m sinusoidal @ 2MHz : completed
 - Sawtooth-RF: in progress
- Construction of 6cell FFAG-ring: completed
- Commissioning: in progress (orbit and tune study)
- Demo. of phase rotation: July 2008 ~

PRISM-FFAG Phase Rotator N=10k = 4.6F/D(BL)=6.2C型FFAG電磁石 \bigcirc r0=6.5m for 68MeV/c half gap = 17cm取り出し用 mag. size 110cm @ F center キッカー電磁石 Radial sector DFD Triplet $\Theta_{\text{F}}/2=2.2\text{deg}$ 高周波空洞 高周波増幅器 Θ_{D} =1.1deg 入射用 キッカー電磁石 Max. field 高周波電源 F: 0.4TD: 0.065Ttune Under Construction h: 2.73v: 1.582003-2007 (with 6 magnets)

Features of PRISM-FFAG Magnet

scaling radial sector

Conventional type. Have larger circumference ratio.

triplet (DFD)

F/D ratio is variable. Ds have field crump effects to realize the large packing factor. the lattice functions has mirror symmetry at the center of a straight section.

large aperture

important for achieve a high intensity muon beam.

thin

Magnets have small opening angle. so FFAG has long straight sections to install RF cavities as mach as possible

DFD Triplet

- C type
- Large Aperture
 - 100 cm (horizontal)
 - 30 cm (vertical)
- Thin Shape
 - Length along beam axis: ~1.2 m
- Slant pole shape
 - Field index = 4.6

The First PRISM-FFAG Magnet

Field Measurements: Acceptance

RF System for PRISM-FFAG

43kV/gap w/ 734Ω dummy cavity @5MHz

expected gradient w/ PRISM-cavity (954 Ω) 56kV_gap = 170kV/m

RF Cavity for PRISM-FFAG

Phase Rotation Simulation for Muons

Demo. of Phase Rotation with α-particles

- FFAG-ring
 - PRISM-FFAG Magnet x 6、RF x 1
- Beam : α-particles from radioactive isotopes
 - 241 Am 5.48MeV(200MeV/c) \rightarrow degrade to 90-100MeV/c

small emittance by collimators

pulsing by electrostatic kickers

Detector : Solid state detector

- energy
- timing

Closed Orbits

RF Cavity with 4 MA cores

RF for 6cell-FFAG

RF system for 6cell-FFAG has been developed. 100kV/m @ 2MHz is promising.

Phase Rotation Simulation for α-particles

Summary

- The current MECO-type experiment can not achieve a sensitivity beyond BR~10⁻¹⁷, because of the backgrounds limitation.
- Not only beam intensity but also its quality is necessary for the (2+N)th generation mu-e conversion experiments.
- PRISM provides a solution adopting a muon storage ring, which make mono-energetic and pure muon beam to aim the sensitivity of BR~10⁻¹⁸.
 A staging scenario of mu-e conversion experiment was proposed in Japan.
- R&D program on the muon storage ring was started in 2003. A large aperture FFAG and a high field gardened RF system, which are necessary for PRISM, were successfully developed.
- A FFAG with six-PRISM-FFAG magnets was build at Osaka, and its commissioning is now underway. Demonstration of phase rotation would be carry out soon (in this year).

Backup Slides